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Abstract
A real matrix is called totally nonnegative if all of its minors are nonnegative.
In this paper the extended Perron complement of a principal submatrix in a
matrix A is investigated. In extension of known results it is shown that if A
is irreducible and totally nonnegative and the principal submatrix consists
of some specified consecutive rows then the extended Perron complement is
totally nonnegative. Also inequalities between minors of the extended Perron
complement and the Schur complement are presented.
Keywords: Totally nonnegative matrix, Perron complement, extended
Perron complement, Schur complement.
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1. Introduction

A real matrix is called totally nonnegative if all of its minors are non-
negative. For properties of these matrices the reader is referred to the two
monographs [6], [10] and the survey paper [4].

In this paper we investigate the extended Perron complement of totally
nonnegative matrices by using properties of determinants and determinantal
inequalities as well as some results on the perturbation of tridiagonal totally
nonnegative matrices [2], cf. [3]. Several interesting properties of the Perron
complement of irreducible nonnegative matrices and a method to compute
the Perron vector of a given irreducible nonnegative matrix by using Perron
complementation and a divide-and-conquer procedure are presented in [8, 9].
Important results on the extended Perron complement of irreducible totally
nonnegative matrices are given in [7].
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The organization of our paper is as follows. In the next section we intro-
duce the notation and the definitions used in the paper. We provide therein
also some determinatal identities and inequalities which we employ in the
proof of our main results. In Section 3 we present our main results. Here we
enlarge the class of principal minors for which the extended Perron comple-
ment of an irreducible totally nonnegative matrix, A say, is known to be in
turn totally nonnegative. Special emphasis is laid on the case that A is in
addition tridiagonal. The paper is completed by several inequalities between
the minors of the extended Perron complement, a specified complementary
principal submatrix, and the Schur complement of A.

2. Notation and auxiliary results

The set of the n-by-m real matrices is denoted by Rn,m (endowed with
the usual entry-wise partial ordering ≤). For integers κ, n, Qκ,n is the set of
all strictly increasing sequences of κ integers chosen from {1, 2, . . . , n}. We
use the set theoretic symbols ∪ and \ to denote somewhat not precisely but
intuitively the union and the difference, respectively, of two index sequences,
where we consider the resulting sequence as strictly increasing ordered. For
α ∈ Qκ,n we define αc := {1, . . . , n} \ α.

For A ∈ Rn,m, α = (α1, α2, . . . , ακ) ∈ Qκ,n, and β = (β1, β2, . . . , βµ) ∈
Qµ,m, we denote by A[α|β] the κ-by-µ submatrix of A lying in the rows in-
dexed by α1, α2, . . . , ακ and columns indexed by β1, β2, . . . , βµ. We suppress
the brackets when we enumerate the indices explicitly. By A(α|β) we de-
note the (n − κ)-by-(m − µ) submatrix A[αc|βc] of A. When α = β, the
principal submatrix A[α|α] is abbreviated to A[α] and detA[α] is called a
principal minor, with the similar notation A(α) for the complementary prin-
cipal submatrix. We also introduce the following notations which simplify
the presentation. For α = {α1, . . . , ακ} ∈ Qκ,n−1 put

α + 1 := {α1 + 1, . . . , ακ + 1} , α1̂ + 1 := {α1, α2 + 1, . . . , ακ + 1} .

A matrix A = (aij) ∈ Rn,n is referred to as tridiagonal (or a Jacobi
matrix) if aij = 0 whenever |i−j| > 1, it is termed nonnegative if A ≥ 0, and
it is called totally nonnegative (abbreviated TN) if detA[α|β] ≥ 0, for all
α, β ∈ Qκ,n. If A is TN and in addition nonsingular we write A is NsTN . In
passing, we note that if A is TN then so are its transpose and A# := TnATn,
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where Tn = (tij) is the permutation matrix of order n with tij = δi,n−j+1,
i, j = 1, . . . , n, see, e.g., [6, Theorem 1.4.1].

A matrix A ∈ Rn,n is termed irreducible if either n = 1 and A 6= 0 or
n ≥ 2 and there is no permutation matrix P such that

PAP T =
[
B C
0 D

]
,

where 0 is the (n − r)-by-r zero matrix (1 ≤ r ≤ n − 1). Otherwise it is
called reducible.

For a matrix A ∈ Rn,n with A[α] is nonsingular for some α ∈ Qκ,n, the
Schur complement of A[α] in A, denoted by A/A[α], is defined as

A/A[α] := A[αc]− A[αc|α](A[α])−1A[α|αc]. (1)

The following theorem is important for the definition of the (extended)
Perron complement of an irreducible nonnegative matrix.

Theorem 2.1. [5, Corollary (1.5), p.27] Let A,B ∈ Rn,n be such that 0 ≤
B ≤ A and A+ B is irreducible. Then ρ(B) < ρ(A), where ρ(·) denotes the
spectral radius.

Definition 2.1. [6, Section 10.4] Let A ∈ Rn,n be an irreducible nonnegative
matrix. Then the Perron complement of A[α] in A is given by

P(A/A[α]) := A[β] + A[β|α](ρ(A)I − A[α])−1A[α|β], (2)

where α ⊂ {1, . . . , n} and β := αc.

Remark 2.1. The expression on the right-hand side of (2) is well defined
by Theorem 2.1 since A is irreducible and nonnegative and hence ρ(A[α]) <
ρ(A).

The Perron complement is extended in the following way [7]:
For any ρ(A) ≤ t, α and β as in Definition 2.1 define

Pt(A/A[α]) := A[β] + A[β|α](tI − A[α])−1A[α|β], (3)

which is called the extended Perron complement of A[α] in A at t. Again
Pt(A/A[α]) is well defined, see Remark 2.1.
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There is an interesting relationship between Sylvester’s determinantal
identity, see, e.g., [6, p.29], and the Schur complement given by (1) for an
n-by-n matrix A [4, p.175], see also [6, formula (10.4)]. Let α = {k, . . . , n}
or α = {1, . . . , κ} . Then

det (A/A[α])[γ|δ] = detA[γ ∪ α|δ ∪ α]
detA[α] , (4)

where 2 ≤ k ≤ n, 1 ≤ κ ≤ n− 1, and γ, δ ⊆ αc with |γ| = |δ|.
From the above equalities we have the following theorem.

Theorem 2.2. [4, Theorem 3.7] Let A ∈ Rn,n be TN and α = {1, . . . , k} or
α = {k, . . . , n}. Then A/A[α] is TN for all k = 1, . . . , n − 1, provided that
A[α] is nonsingular.

The following theorem and two lemmata play an important role in show-
ing the total nonnegativity and nonsingularity of the extended perron com-
plement.

Theorem 2.3. [6, Corollary 6.2.4, Koteljanskĭi Inequality] Let A ∈ Rn,n be
TN . Then for any α ∈ Qκ,n and β ∈ Qµ,n, the following inequality holds:

detA[α ∪ β] · detA[α ∩ β] ≤ detA[α] · detA[β], (5)

with the convention detA[φ] := 1.

Lemma 2.1. E.g., [10, Theorem 1.13] All principal minors of a NsTN
matrix are positive.

Lemma 2.2. [2, Lemma 12] Let A ∈ Rn,n be an irreducible, tridiagonal TN
matrix. Then detA(i) > 0, i = 1, . . . , n.

3. Main results

In this section we present our main results. In [7, p.90], see also [6,
Example 10.4.3], Fallat and Neumann give an example with n = 10, α = {7}
which documents that TN matrices are not closed under arbitrary Perron
complementation, even when α is a singleton, except α = {1} or α = {n}.
For the following theorem we present a new proof because we will extend this
theorem by similar means, see Theorem 3.2.
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Theorem 3.1. [7, Lemma 2.2], [6, Lemma 10.4.2] Let A = (aij) ∈ Rn,n be
irreducible TN , and α = {1} or α = {n}. Then for any t, ρ(A) ≤ t, the
matrix Pt(A/A[α]) is TN .

Proof. We give the proof only for the case α = {1} since the other case
follows by application of the same arguments to A#. Formula (3) specifies
for α = {1} to

Pt(A/A[1]) = A[2, . . . , n] + 1
t− a11

A[2, . . . , n|1]A[1|2, . . . , n]. (6)

By direct computations, it is easy to see that

Pt(A/A[1])[1, . . . , n− 1|j] = A[2, . . . , n|j + 1] + a1,j+1

t− a11
A[2, . . . , n|1], (7)

for j = 1, . . . , n− 1.
For any γ = {γ1, . . . , γl} , δ = {δ1, . . . , δl} ∈ Ql,n−1, l = 1, . . . , n − 1, it is
advantageous to represent detPt(A/A[1])[γ|δ] in the following way

detPt(A/A[1])[γ|δ] = det
[

1 0
A[γ + 1|1] Pt(A/A[1])[γ|δ]

]
. (8)

Then we subtract in the matrix on the right-hand side of (8) from the µth
column the first column multiplied by a1,δµ−1+1

t−a11
, µ = 2, . . . , l+ 1, and extract

from the first row the common factor 1
t−a11

to obtain

detPt(A/A[1])[γ|δ]

= 1
t− a11

det
[
t− a11 −A[1|δ + 1]

A[γ + 1|1] A[γ + 1|δ + 1]

]

= 1
t− a11

(t detA[γ + 1|δ + 1]− detA[{1} ∪ (γ + 1)| {1} ∪ (δ + 1)])

≥ 1
t− a11

(t detA[γ + 1|δ + 1]− a11 detA[γ + 1|δ + 1]) (9)

= detA[γ + 1|δ + 1], (10)

where inequality (9) follows by using Theorem 2.3. Hence all minors of
Pt(A/A[1]) are nonnegative and so Pt(A/A[1]) is TN .

In the next theorem we extend the above statement to two further special
singleton sets.
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Theorem 3.2. Let A = (aij) ∈ Rn,n be irreducible TN , and α = {2} or
α = {n− 1}. Then for any t, ρ(A) ≤ t, the matrix Pt(A/A[α]) is TN .

Proof. Again we provide the proof only for the case α = {2} since the other
case follows by application of the same arguments to A#. Formula (3) spec-
ifies for α = {2} to

Pt(A/A[2]) = A(2) + 1
t− a22

A[{2}c |2]A[2| {2}c]. (11)

As in the proof of Theorem 3.1, we have

Pt(A/A[2])[1, . . . , n− 1|j]=


A[{2}c |1] + a21

t−a22
A[{2}c |2], j = 1,

A[{2}c |j + 1] + a2,j+1
t−a22

A[{2}c |2], j = 2, . . . , n− 1.

For any γ = {γ1, . . . , γl} , δ = {δ1, . . . , δl} ∈ Ql,n−1, l = 1, . . . , n − 1, we
distinguish the following four cases. The equalities in the first two cases
follow by using properties of determinants as in the proof of Theorem 3.1
and the inequalities follow by using Theorem 2.3.
(i) If 1 ∈ γ ∩ δ, then

detPt(A/A[2])[γ|δ] = 1
t− a22

(t detA[γ1̂ + 1|δ1̂ + 1]

− detA[{2} ∪ (γ1̂ + 1)| {2} ∪ (δ1̂ + 1)])
≥ detA[γ1̂ + 1|δ1̂ + 1]. (12)

(ii) If 1 /∈ γ ∪ δ, then

detPt(A/A[2])[γ|δ] = 1
t− a22

(t detA[γ + 1|δ + 1]

− detA[{2} ∪ (γ + 1)| {2} ∪ (δ + 1)])
≥ detA[γ + 1|δ + 1].

(iii) If 1 ∈ γ and 1 /∈ δ, then

detPt(A/A[2])[γ|δ] = 1
t− a22

(t detA[γ1̂ + 1|δ + 1]

+ detA[{2} ∪ (γ1̂ + 1)| {2} ∪ (δ + 1)])
≥ 0,

since A is TN .
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(iv) If 1 /∈ γ and 1 ∈ δ, then

detPt(A/A[2])[γ|δ] = 1
t− a22

(t detA[γ + 1|δ1̂ + 1]

+ detA[{2} ∪ (γ + 1)| {2} ∪ (δ1̂ + 1)])
≥ 0,

since A is TN .

Hence all minors of Pt(A/A[2]) are nonnegative and so Pt(A/A[2]) is TN .

Remark 3.1. By an easy and direct proof one can show that Pt(A/A[α])
in Theorems 3.1 and 3.2 is irreducible. If, in addition, the given matrix
in these theorems is nonsingular, then by Lemma 2.1, (10), and (12) the
extended Perron complement is also nonsingular.

Unfortunately, the above two theorems cannot be extended to any single-
ton set {k}, 3 ≤ k ≤ n− 2 with 5 ≤ n as the following remark and example
demonstrate.

Remark 3.2. There are infinitely many totally nonnegative matrices A =
(aij) ∈ R5,5 such that Pt(A/A[3]) is not TN . For instance, consider the
matrix A for which the only zero minor is detA[1, 2|4, 5]. Such matrices can
be easily found by using the so-called the Restoration Algorithm, see e.g., [1,
p.42]. By direct calculations, one obtains that

detPt(A/A[3])[1, 2|3, 4] = 1
t− a33

(t detA[1, 2|4, 5]− detA[1, 2, 3|3, 4, 5])

= − detA[1, 2, 3|3, 4, 5]
t− a33

< 0.

For instance, consider the following illustrative example.

Example 3.1. [1, Example 5.3] Let

A :=


50 25 11 4 1
35 20 10 4 1
15 10 6 3 1
5 4 3 2 1
1 1 1 1 1

 . (13)

7



Then A is irreducible TN ,

Pt(A/A[3]) =


50 + 165

t−6 25 + 110
t−6 4 + 33

t−6 1 + 11
t−6

35 + 150
t−6 20 + 100

t−6 4 + 30
t−6 1 + 10

t−6
5 + 45

t−6 4 + 30
t−6 2 + 9

t−6 1 + 3
t−6

1 + 15
t−6 1 + 10

t−6 1 + 3
t−6 1 + 1

t−6

 , (14)

and detPt(A/A[3])[1, 2|3, 4] = −1
t−6 < 0 for any t, ρ(A) ≈ 72.756 ≤ t.

The following theorem provides a quotient formula for the extended Per-
ron complement.

Theorem 3.3. [7, Theorem 2.4], [6, Theorem 10.4.4] Let A ∈ Rn,n be an
irreducible nonnegative matrix, and fix any nonempty set α ⊂ {1, . . . , n}.
Then for any nonempty subsets α1, α2 ⊂ α with α1∪α2 = α and α1∩α2 = φ,
we have

Pt(A/A[α]) = Pt(Pt(A/A[α1])/Pt(A/A[α1])[α2]) (15)

for any t, ρ(A) ≤ t.

By using Theorems 3.1, 3.2, and 3.3, we obtain the following theorem.

Theorem 3.4. Let A ∈ Rn,n be irreducible TN , and α be any one of the
following subsets:

(i) {1, . . . , k} or {k, . . . , n};

(ii) {2, . . . , k} or {k, . . . , n− 1},

for k = 2, . . . , n − 1. Then for any t, ρ(A) ≤ t, the matrix Pt(A/A[α]) is
TN .

The case (i) in the above theorem is given in [7, Theorem 2.5], see also
[6, Theorem 10.4.5].

Theorems 3.1 and 3.2 can be extended to any singleton {k} for the class of
irreducible tridiagonal TN matrices as the following theorem documents. It is
a special case of Theorem 3.6 below; it was first proved in [7, Proposition 2.1];
the following proof and the statement on the nonsingularity of Pt(A/A[k])
are new.
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Theorem 3.5. Let A = (aij) ∈ Rn,n be irreducible tridiagonal TN . Then for
any singleton subset α = {k}, k = 1, . . . , n, the extended Perron complement
Pt(A/A[k]) is irreducible tridiagonal NsTN for any t, ρ(A) ≤ t.

Proof. For k = 1, 2, n− 1, n the total nonnegativity of Pt(A/A[k]) follows by
Theorems 3.1 and 3.2, whereas the nonsingularity follows by (10), (12), and
Lemma 2.2. Suppose that 2 < k < n− 1. Then formula (3) specifies to

Pt(A/A[k]) = A(k) + 1
t− akk

A[{k}c |k]A[k| {k}c]. (16)

By direct computations, Pt(A/A[k]) is an irreducible and tridiagonal matrix
which coincides with A(k) except in the following four positions:

(i) (k − 1, k − 1), (k, k) which become ak−1,k−1 + 1
t−akk

ak−1,k · ak,k−1,

ak+1,k+1 + 1
t−akk

ak+1,k · ak,k+1, respectively;

(ii) (k, k − 1) which becomes 1
t−akk

ak+1,k · ak,k−1;

(ii) (k − 1, k) which becomes 1
t−akk

ak−1,k · ak,k+1.

We consider A(k) and add first to the diagonal entries the positive quantities
that appear in (i). By [4, Corollary 2.4] and Lemma 2.2 the resulting matrix
is NsTN . Next we add the quantity in (ii) to the position (k, k − 1). Since
the resulting matrix, called B, has at position (k − 1, k) a zero entry it is
NsTN by [2, Theorem 9]. It remains to add the quantity that appears in
(iii) to the zero position (k − 1, k). By [2, Theorem 9] the resulting matrix
is NsTN if

1
t− akk

ak−1,k · ak,k+1 <
detB

detB(k − 1|k) . (17)

By [10, formula (4.1)] and some simplifications, the right-hand side of (17)
becomes

(t− akk) detA[1, . . . , k − 1] + ak−1,kak,k−1 detA[1, . . . , k − 2]
ak,k−1ak+1,k detA[1, . . . , k − 2] detA[k + 2, . . . , n]

·(detA[k + 1, . . . , n] + 1
t− akk

ak,k+1ak+1,k detA[k + 2, . . . , n]),

9



which is a sum consisting of positive terms (by irreducibility of A and Lemma
2.2) and

1
t− akk

ak−1,k · ak,k+1,

whence inequality (17) holds. Hence Pt(A/A[k]) is NsTN for all k = 1, . . . , n
and ρ(A) ≤ t.

Theorem 3.6. [7, Corollary 2.6], [6, Corollary 10.4.6] Let A ∈ Rn,n be ir-
reducible tridiagonal TN . Then for any α ⊂ {1, . . . , n}, the extended Perron
complement is irreducible tridiagonal TN for any t, ρ(A) ≤ t.

By using Theorems 3.3, 3.5, and Remark 3.1 we may conclude that under
the conditions of Theorem 3.6 the resulting extended Perron complement is,
in addition, nonsingular.

We conclude the paper with two theorems which compare for a TN matrix
A corresponding minors of Pt(A/A[α]), A(α), and A/A[α]. For simplicity of
notation we put B1 := Pt(A/A[α]), B2 := A(α), and B3 := A/A[α] for any
ρ(A) ≤ t and α ∈ Qκ,n and assume that the indexing of any complement
(Perron and Schur) and accordingly of A(α) is inherited from the indexing of
the original matrix. For example, if A ∈ R10,10, and α = {2, 3, 4, 7}, then the
rows and columns of B1, B2, and B3 are indexed by the integers 1, 5, 6, 8, 9, 10
(ordered).

Theorem 3.7. Let A ∈ Rn,n be irreducible TN , and α ∈ {{1} , {2} , {n− 1} , {n}}.
Then for any γ, δ ∈ Ql,n, l = 1, . . . , n− 1, the following inequalities hold:

detB1[γ|δ] ≥ detB2[γ|δ] ≥ detB3[γ|δ]. (18)

Proof. We present the proof only for the cases α = {1} and α = {2} since
the other two cases follow analogously.
Case 1. α = {1}.
By (10) we have detB1[γ|δ] ≥ detB2[γ|δ] and by (4) detB3[γ|δ] = detA[γ∪{1}|δ∪{1}]

a11
,

whence by (5) detB2[γ|δ] ≥ detB3[γ|δ].
Case 2. α = {2}.
By (i)-(iv) in the proof of Theorem 3.2 we have detB1[γ|δ] ≥ detB2[γ|δ]. If
1 ∈ γ ∩ δ or 1 /∈ γ ∪ δ, then by Sylvester’s determinantal identity [6, p.29]
and (5) we have detB2[γ|δ] ≥ detB3[γ|δ] and if 1 ∈ γ ∪ δ and 1 /∈ γ ∩ δ, then
detB3[γ|δ] ≤ 0 and hence detB2[γ|δ] ≥ detB3[γ|δ] since A is TN .
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The cases α = {1} or α = {n} in the above theorem and Statement 1. in
the following theorem are contained in [7, Theorem 2.7]. The next theorem
provides in (ii) an additional case.

Theorem 3.8. Let A ∈ Rn,n be irreducible TN . Then the following two
statements hold:

(i) If α = {1, . . . , k1} for some k1 < n, then for any γ, δ ∈ Ql,n, l =
1, . . . , n− k1, the following inequalities hold:

detB1[γ|δ] ≥ detB2[γ|δ] ≥ detB3[γ|δ], (19)

(ii) If α = {2, . . . , k2} for some 1 < k2 < n, then for any γ, δ ∈ Ql,n,
l = 1, . . . , n− k2, the following inequality holds:

detB1[γ|δ] ≥ detB2[γ|δ], (20)

and if in addition 1 /∈ γ ∪ δ the following inequality holds:

detB2[γ|δ] ≥ detB3[γ|δ]. (21)

Proof. (i) Let α = {1, . . . , k1}. Then the left inequality of (19) follows by
using Theorems 3.7 and 3.3 and the other inequality follows by using (4) and
(5).
(ii) Let α = {2, . . . , k2}. Then (20) is again a consequence of Theorems 3.7
and 3.3. For (21), it is easy to see by using (4) that for any γ, δ ∈ Ql,n−k2 ,
l = 1, . . . , n− k2, with 1 /∈ γ ∪ δ the equality

detB2[γ|δ] = detA[γ ∪ α|δ ∪ α]
detA[α]

holds. Hence by (5) the inequality (21) follows.
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